Theoretical Investigation of the Origin of Secondary a-Deuterium Kinetic Isotope Effects

John A. Barnes and Ian H. Williams*

School of Chemistry, University of Bath, Bath, UK BA2 7AY

Although the secondary *a*-deuterium kinetic isotope effect upon the degenerate S_N2 reaction of chloromethane with chloride anion arises from changes in a-CH stretching force constants, *a-su* bstitution by methyl and/or methoxy groups shows this inverse inductive contribution to be approximately constant and reveals that the trend in the isotope effect (calculated **by** semiempirical molecular orbital theory) is determined by changes in bending force constants, in accord with the conventional view.

Recent theoretical studies^{1,2} of S_N2 methyl transfer reactions have questioned the conventional view³ of the origin of secondary a-deuterium kinetic isotope effects (2" *a-D* **KIEs)** as arising from changes in bending-force constants HCX ${$ (where X is the nucleofuge and/or nucleophile) in a degenerate process [eqn. (1)]} between reactant and transition state.

$$
X^- + MeX \to XMe + X^-
$$
 (1)

Instead, it has been pointed out that the inverse α -D **KIEs** for eqn. (1) $(X = Cl, F, OF, NC, OMe, CN and CCH)$ calculated by means of *ab initio* molecular orbital theory arise from an increase in the α -CH bond stretching force constant accompanying the change from tetrahedral to trigonal geometry about C_{α} along the reaction coordinate. We now report preliminary results of semiempirical molecular orbital theory calculations of 2° α -D KIEs for degenerate S_N2 reactions involving α -substitution by methyl and/or methoxy groups $[eqn. (2), R', R'' = H, Me, OMe]$: these confirm the recent

$$
Cl^{-} + \text{CHR}'\text{R}''Cl \rightarrow \text{CICHR}'\text{R}'' + \text{Cl}^{-} \tag{2}
$$

findings for methyl transfer $(R' = R'' = H)$ but suggest that the overall trend in the *a-D* **KIEs** may be understood within the framework of the conventional view.

The trend in the AM1⁴ semiclassical⁵ 2° α -D KIEs calculated at **298** K (Table **1;** results are for replacement of a single H by D) for the range of degenerate S_N 2 reactions [eqn. (2)] is clearly dominated by the zero-point energy factor **(ZPE)** , the

Table 1 AM1 calculated semiclassical 2" a-D **KIEs at 298 K for** degenerate S_N 2 reaction of Cl⁻ with CLR'R"Cl (L = H, D), together **with zero-point energy factors and transition-state partial-bond lengths**

\mathbf{R}'	\mathbf{R}''	(k_H/k_D) , ZPE		ZPE factors		
				CH		stretches The rest $C \cdots C I/A$
н	н	0.982	0.935	0.959	0.975	2.154
$\bf H$	Me	1.015	0.977	0.954	1.024	2.202
$\mathbf H$	MeO	1.048	1.027	0.954	1.077	2.252
Me	Me	1.090	1.114	0.952	1.170	2.270
Me	MeO	1.156	1.196	0.960	1.246	2.335

magnitude of which is offset by the product **(MMI x** EXC) of the mass/moment-of-inertia and excitational factors; there is an excellent linear correlation between (k_H/k_D) _s and ZPE. Further factorization of the overall **ZPE** term reveals an almost constant inverse contribution from the CH stretching modes but a contribution from all the other modes ('the rest'), which varies proportionally with $(k_H / k_D)_{s}$. The inverse CHstretching contribution agrees with the findings of both Wolfel and Truhlar² and indeed with our own previously reported ab *initio* calculated *a-D* **KIEs** for methyl transfer.6 The range of values from **0.952** to **0.960** are consistent with this contribution being regarded as inductive: a typical value^{5,7} for an inductive p-D **KIE** is **0.985 from** which, if an attenuation factor of about three per C-C bond is applied,^{5,8} a value of *ca.* 0.955 may be estimated for an inductive *a-D* **KIE.**

The contribution to the *a-D* **KIE** from all the rest of the vibrational modes, but especially including α -CH bending modes, tends to be normal. Increasing the number of electron-donating methyl or methoxy substituents attached to C_{α} causes more carbocation character to develop in the transition state 1 and the $C_{\alpha} \cdots C_1$ partial bonds to increase in length (Table 1). This opening up of the transition-state structure does indeed involve a trend towards loosening of the a-CH bending motions, in turn giving rise to a normal **ZPE** contribution to the *a-D* **KIE.** The value of this factor ('the rest') is just slightly greater than unity with a single α -methyl substituent ($R' = H$, $R'' = Me$), but is just slightly less than unity for the unsubstituted system $(R' = R'' = H)$; in these cases the product of the **ZPE** factors appears to be dominated by the α -CH stretching contribution. Analysis of the molecular vibrational force fields is complicated by the presence of redundancies involving the bending modes about \overline{C}_α in both the tetrahedral reactant structures and the trigonal bipyramidal transition-state structures, with the consequence that a valence force constant for HCCl angle bending is not

Table 2 AM1 calculated force constants [mdyn \hat{A} rad⁻² (1 dyn = 10⁻⁵ N)] for α -CH bending in reactants and transition states

unambiguously defined. However, Table 2 contains two different representations of the **AM1** calculated force constants, each of which suggests a trend towards looser α -CH bending with increasing electron-donating α -substitution. In method A the redundancies are eliminated as previously reported for distorted tetrahedra⁹ and trigonal bipyramids^{6,10} and HCCl force constants are obtained from sets of six or nine redundant valence coordinates for bending about C_{α} in reactants and transition states, respectively. In method B the force constant for the 'umbrella' symmetry coordinate for bending about C_{α} in the reactants is compared with the force constant for wagging of the α -CH bond out of the plane of the trigonal C_{α} moiety of the transition states. Linear regression of the changes ΔF in these force constants from reactant to transition state against the ZPE factor (Table **1,** 'the rest') gives correlation coefficients of 0.952 and **0.961** for methods **A** and B, respectively.

In a recent experimental study¹¹ of deuterium isotope effects in gas-phase reactions of alkyl halides, inverse values of k_H/k_D were interpreted as characterizing the S_N2 mechanism and all significantly normal values were taken to indicate reactions proceeding mainly by the E2 mechanism. Our present results suggest, however, that it is quite reasonable for S_N2 reactions of α -substituted alkyl chlorides to manifest significantly normal a-D **KIEs,** in accord with conventional views. Reactions of **N-(methoxymethy1)-N,N-dimethylanili**niuml2 or 1 -(**methoxymethyl)-2,4-dinitrobenzene13** in solution show 2° α -D **KIEs** (per D) in the ranges 0.99–1.18 and 1.05-1.16, respectively, depending upon the choice of nucleophile, for bimolecular substitutions proceeding by means of very loose transition states. We thank the SERC for support.

Received, 28th April 1993; Corn. 3/02449K

References

- **1** *S.* **Wolfe and C.-K. Kim,** *J. Am. Chem. SOC.,* **1991,113,8056.**
- **2** *X. G.* **Zhao, S. C. Tucker and** D. **G. Truhlar,** *J. Am. Chem. SOC.,* **1991,113,826.**
- **3 A. Streitwieser, R. H. Jagow, R. C. Fahey and** *S.* **Suzuki,** *J. Am. Chem. SOC.,* **1958,** *80,* **2326; K. T. Leffek, J. A. Llewellyn and R. E. Robertson,** *Can. J. Chem,,* **1960,** *38,* **1505; M. Wolfsberg and M. J. Stern,** *Pure Appl. Chem.,* **1964, 8,235.**
- **4 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart,** *J. Am. Chem.* **SOC., 1985,107,3902.**
- *5* **L. Melander and W. H. Saunders,** *Reaction Rates of Isotopic Molecules,* **Wiley Interscience, New York, 1980.**
- **6 1.** H. **Williams,** *J. Am. Chem. SOC.,* **1984,106,7206.**
- **7 V. J. Shiner, in** *Isotope Effects in Chemical Reactions,* **ed. C. J. Collins and N. S. Bowman, Van Nostrand Reinhold, New York, 1970.**
- **8 J. E. Leffler and E. Grunwald,** *Rates and Equilibria of Organic Reactions,* **Wiley, New York, 1963.**
- **9 I. H. Williams,** *Chem. Phys. Lett.,* **1982, 88, 462.**
- **10 I. H. Williams,** *Bull. SOC. Chim. Belg.,* **1982,91, 356.**
- **11 S. Gronert, C.** H. **DePuy and V. M. Bierbaum,** *J.* **Am.** *Chem.* **SOC., 1991,113, 4009.**
- 12 B. L. Knier and W. P. Jencks, *J. Am. Chem. Soc.*, 1980, 102, 6789. **13 G. A. Craze, A. J. KirbyandR. J. Osborne,** *J. Chem.* **Soc.,** *Perkin Trans. 2,* **1978, 357.**